Lightest U-parity Particle (LUP) dark matter

Hye-Sung Lee University of Florida

HL, K. Matchev, T. Wang [0709.0763]; T. Hur, HL, S. Nasri [0710.2653];

HL, C. Luhn, K. Matchev [0712.3505]; HL [0802.0506].

Lightest U-parity Particle (LUP) dark matter

in the R-parity violating SUSY model

Hye-Sung Lee

University of Florida

HL, K. Matchev, T. Wang [0709.0763]; T. Hur, HL, S. Nasri [0710.2653];

HL, C. Luhn, K. Matchev [0712.3505]; HL [0802.0506].

Outline

- Companion symmetry of SUSY
 - R-parity
 - TeV scale $U(1)^\prime$ gauge symmetry
- ullet R-parity violating, U(1)'-extended SUSY model
 - Proton stability
 - Dark matter candidate

 $\label{eq:linear_loss} \mbox{Lightest U-parity Particle (LUP) dark matter}$

Companion symmetry of SUSY

SUSY 2008 Hye-Sung Lee

SUSY with R-parity

$$W_{R_p} = \mu H_u H_d$$

$$+ y_E H_d L E^c + y_D H_d Q D^c + y_U H_u Q U^c$$

$$+ (\lambda L L E^c + \lambda' L Q D^c + \mu' L H_u + \lambda'' U^c D^c D^c)$$

$$+ \frac{\eta_1}{M} Q Q Q L + \frac{\eta_2}{M} U^c U^c D^c E^c + \cdots$$

1. μ -problem: $\mu \sim \mathcal{O}(\text{EW})$ to avoid fine-tuning in the EWSB.

(Kim, Nilles [1984])

- 2. over-constraining of the R-parity: All renormalizable \mathcal{L} violating and \mathcal{B} violating terms are (unnecessarily) forbidden.
- 3. under-constraining of the R-parity: Dimension 5 $\mathcal{L}\&\mathcal{B}$ violating terms still mediate too fast proton decay. (Weinberg [1982])

Fast proton decay

[Dim 4 $\mathcal L$ violation & Dim 4 $\mathcal B$ violation] R-parity violating terms

[Dim 5 $\mathcal{B\&L}$ violation] R-parity conserving terms

$\label{eq:linear_loss} \mbox{Lightest U-parity Particle (LUP) dark matter}$

Look for an additional or alternative explanation (symmetry).

ightarrow We will consider a TeV scale Abelian gauge symmetry, U(1)'.

TeV scale U(1)' gauge symmetry

Natural scale of U(1)' in SUSY models is TeV (linked to sfermions scales).

 \rightarrow provides a natural solution to the μ -problem.

Two conditions to "solve the μ -problem". (z[F]:U(1)' charge of F)

•
$$\mu H_u H_d$$
: forbidden $z[H_u] + z[H_d] \neq 0$

•
$$hSH_uH_d$$
: allowed $z[S] + z[H_u] + z[H_d] = 0$

S is a Higgs singlet that breaks the $U(1)^\prime$ spontaneously.

$$\mu_{\mathrm{eff}} = h \left\langle S \right\rangle \sim \mathcal{O}(\text{EW/TeV})$$

Goal

Construct a stand-alone R_p violating TeV scale SUSY model without

- 1. μ -problem: U(1)'
- 2. proton decay problem
- 3. dark matter problem (non-LSP dark matter)

"R-parity violating $U(1)^\prime$ model" as an alternative to the usual "R-parity conserving model".

Use residual discrete symmetry of the $U(1)^\prime$ to address the issues.

Conditions to have $U(1) \to Z_N$

U(1) have a residual discrete symmetry ${\cal Z}_N$ if their charges satisfy (after normalization to integers):

- \bullet z[S] = N
- $\bullet \ z[F_i] = q[F_i] + n_i N$

 $(z[F_i]: U(1) \text{ charge}, q[F_i]: Z_N \text{ charge})$ for each field F_i .

Discrete symmetry compatible with MSSM sector

Most general Z_N of the MSSM sector (Ibanez, Ross [1992]) is

$$Z_N: B_N^b L_N^\ell$$

with family-universal cyclic symmetries ($\Phi_i \to e^{2\pi i \frac{q_i}{N}} \Phi_i$)

$$B_N = e^{2\pi i \frac{q_B}{N}}, \quad L_N = e^{2\pi i \frac{q_L}{N}}.$$

	Q	U^c	D^c	L	E^c	N^c	H_u	H_d	meaning of q
B_N	0	-1	1	-1	2	0	1	-1	$-\mathcal{B} + y/3$
L_N	0	0	0	-1	1	1	0	0	$-\mathcal{L}$

General discrete charge of Z_N is

$$q = bq_B + \ell q_L \mod N$$
$$= -(b\mathcal{B} + \ell \mathcal{L}) + b(y/3) \mod N.$$

Residual discrete symmetry of the RPV $U(1)^\prime$ model

: Proton stability without R-parity

HL, Matchev, Wang [arXiv:0709.0763]

HL, Luhn, Matchev [arXiv:0712.3505]

SUSY 2008 Hye-Sung Lee

Discrete symmetries in presence of exotics

- There may be TeV scale exotic fields required to cancel chiral anomaly.
- The MSSM discrete symmetries still hold among the MSSM fields.

For a physics process which has only MSSM fields in its effective operators (such as proton decay), we can still discuss with $Z_N^{
m MSSM}$.

operator[p-decay]
$$= \left(\frac{1}{M}\right)^m \underbrace{\left[F_1F_2F_3F_4F_5\cdots\right]}_{\mbox{MSSM fields only}}$$

Discrete symmetry in the \mathcal{L} violating case

From the superpotential terms and $[SU(2)_L]^2$ -U(1)' anomaly condition, general U(1)' charges for the MSSM sector in the $\mathcal L$ violating case :

$$\begin{pmatrix} z[Q] \\ z[U^c] \\ z[D^c] \\ z[L] \\ z[N^c] \\ z[E^c] \\ z[H_d] \\ z[S] \end{pmatrix} = \alpha' \begin{pmatrix} 1 \\ -4 \\ 2 \\ -3 \\ 0 \\ 6 \\ -3 \\ 3 \\ 0 \end{pmatrix} + \beta' \begin{pmatrix} 3(1+n)+1 \\ -3n-1 \\ 1 \\ 3(1-a+n) \\ -3n-2 \\ 3n+1 \\ -3(1+n)-1 \\ 3 \end{pmatrix} \longrightarrow \begin{pmatrix} q[Q] \\ q[U^c] \\ q[D^c] \\ q[L] \\ q[N^c] \\ q[E^c] \\ q[H_d] \\ q[H_d] \\ q[H_d] \\ q[H_u] \\ q[S] \end{pmatrix} = - \begin{pmatrix} 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ mod 3. \end{pmatrix}$$

Compare with charge table. $\rightarrow B_3$ (baryon triality) in the MSSM sector

	Q	U^c	D^c	L	E^c	N^c	H_u	H_d	meaning of q
B_3	0	-1	1	-1	-1	0	1	-1	$-\mathcal{B} + y/3$

SUSY 2008 Hye-Sung Lee

Lightest U-parity Particle (LUP) dark matter

Selection rule of B_3 and proton stability

The discrete charge of B_3 for arbitrary operator is $(-\mathcal{B} + y/3) \mod 3$.

$$\Delta \mathcal{B} = 3 \times \text{integer}$$

for any process. (Castano, Martin [1994])

(Baryon number can be violated by only $3 \times \text{integer}$ under the B_3 .)

 \rightarrow Proton decay ($\Delta \mathcal{B} = 1$): Forbidden

Lightest U-parity Particle (LUP) dark matter

Ensuring proton stability in the \mathcal{L} violating model (B_3)

- 1. Solve the μ -problem with U(1)' gauge symmetry.
- 2. Require \mathcal{L} violating terms such as $\lambda' LQD^c$. [B_3 is invoked]
- 3. Then proton is absolutely stable!

$\ \, {\it Lightest} \,\, U \hbox{-parity Particle (LUP) dark matter} \\$

Recap of the goal

Construct a stand-alone R_p violating TeV scale SUSY model without

- 1. μ -problem: U(1)'
- 2. proton decay problem: $U(1)' \rightarrow B_3$
- 3. dark matter problem (non-LSP dark matter)

A dark matter candidate without introducing an independent symmetry?

Residual discrete symmetry extended to hidden sector

: LUP dark matter from hidden sector

Hur, HL, Nasri [arXiv:0710.2653]

HL [arXiv:0802.0506]

SUSY 2008 Hye-Sung Lee

SM-singlet exotics (hidden sector fields)

SM-singlet exotics: often required for anomaly cancellations with $U(1)^\prime$

$$([gravity]^2 - U(1)', [U(1)']^3)$$

We consider Majorana fields for simplicity.

$$W_{\text{hidden}} = \frac{\xi}{2} SXX$$

These hidden sector fields (X) are neutral and massive particles.

→ Potentially dark matter candidate if they are stable.

How to stabilize hidden sector field?

Introduce "U-parity"

$$U_p[MSSM] = even, \quad U_p[X] = odd$$

• Lightest U-parity Particle (LUP): Lightest $X \to \text{stable}$ either fermion (ψ_X) or scalar (ϕ_X) component

It can be invoked as a residual discrete symmetry of the $U(1)^{\prime}$.

$$Z_N^{hid}$$
 : U_2 $(U ext{-parity})$ $z[F_i] = q[F_i] + 2n_i$

	Q	U^c	D^c	L	E^c	N^c	H_u	H_d	X	meaning of q
U_2	0	0	0	0	0	0	0	0	-1	$-\mathcal{U}$ (X number)

(Other exotics: assumed to be heavier than the lightest X.)

Discrete symmetries over the MSSM and the hidden sectors

Now consider $U(1)' \to Z_6^{tot}$, which is

$$Z_6^{tot} = B_3 \times U_2$$

with $q = 2q_B + 3q_U \mod 6$.

	Q	U^c	D^c	L	E^c	N^c	H_u	H_d	X
$Z_6 = B_3 \times U_2$	0	-2	2	-2	-2	0	2	-2	-3

(Other exotic fields: assumed to be heavier than proton and the LUP
→ not stable due to the discrete symmetry.)

More generally, it is $U(1)' \to Z_N^{tot}$, which is

$$Z_N^{tot} = Z_{N_1}^{obs} \times Z_{N_2}^{hid}$$

(where $N=N_1N_2$; N_1 and N_2 are coprime).

A unified picture of the stabilities in the observable and hidden sectors

$$U(1)' \rightarrow Z_{N_1}^{obs} \times Z_{N_2}^{hid}$$

A single U(1)' gauge symmetry provides stabilities for proton (MSSM sector) and dark matter (hidden sector).

Lightest U-parity Particle (LUP)

- It is a neutral, massive, and stable particle from hidden sector.
- It can be either a fermion or a scalar.
- It is neither the RH neutrino nor RH sneutrino (H_uLN^c).
- ullet It naturally arises when an extra U(1) gauge symmetry is present.

To be a viable dark matter candidate, it should satisfy the relic density and direct detection constraints, too.

Annihilation channels for the LUP dark matter

For ψ_X (fermionic) LUP,

- 1. $\psi_X \psi_X \to f \bar{f}$ (Z' mediated s-channel)
- 2. $\psi_X \psi_X \to \widetilde{f} \widetilde{f}^*$ (S mediated s-channel, Z' mediated s-channel)
- 3. $\psi_X \psi_X \to SS$, Z'Z' (S mediated s-channel, ψ_X mediated t-ch)
- 4. $\psi_X \psi_X \to SZ'$ (Z' mediated s-channel, ψ_X mediated t-channel)
- 5. $\psi_X \psi_X \to \widetilde{S}\widetilde{S}$ (Z' mediated s-channel, ϕ_X mediated t-channel)
- 6. $\psi_X \psi_X \to \widetilde{Z}'\widetilde{Z}'$ (ϕ_X mediated t-channel)
- 7. $\psi_X \psi_X \to \widetilde{S}\widetilde{Z}'$ (S mediated s-channel, ϕ_X mediated t-channel)

and also similarly for ϕ_X (scalar) LUP.

Predictions of relic density and direct detection cross-section (for ϕ_X)

[Simulated with micrOMEGAs + newly constructed UMSSM model file]

LUP dark matter can satisfy both the relic density and direct detection constraints.

SUSY 2008 Hye-Sung Lee

Summary

R-parity conserving model vs. R-parity violating U(1)' model

	R_p	$U(1)' \to B_3 \times U_p$
RPV signals	impossible	possible
μ -problem	not addressed	solvable ($U(1)'$)
proton	unstable w/ dim 5 op. (R_p)	stable (B_3)
dark matter	stable LSP (R_p)	stable LUP (U_p)

Summary

R-parity conserving model vs. R-parity violating U(1)' model

	R_p	$U(1)' \to B_3 \times U_p$
RPV signals	impossible	possible
μ -problem	not addressed	solvable ($U(1)^{\prime}$)
proton	unstable w/ dim 5 op. (R_p)	stable (B_3)
dark matter	stable LSP (R_p)	stable LUP (U_p)

Conclusion: TeV scale $U(1)^\prime$ is an attractive alternative to R-parity.